
APPENDIX
In Appendix, we further illustrate the technical details of

training, deploying, and experiment setting. Appendix mainly
has these sections:

• A. Reward Functions: the formula of each reward, the
definition and analysis of regularization reward, and style
reward.

• B. Network Architectures: the network architectures
of Actor RNN, Critic RNN, Estimator Module, Latent
Encoder, and Contact Encoder.

• C. Dynamic Randomization: details of the domain
randomization and Gaussian noise.

• D. Trap Terrain Setting in Simulation: the trap terrain
details for training.

• E. Training Hyperparameters: the hyperparameters of
PPO, contact force, and t-SNE visualization.

• F. Importance Analysis: the method and formula for
importance analysis.

• G. Real-world Experiment Settings and Additional
Results: details of the experimental equipment and
deployment, and additional experiments in the low-light
environment.

A. Reward Functions
The reward function has three components: task reward 𝑟𝑇𝑡 ,

regularization reward 𝑟𝑅𝑡 , and style reward 𝑟𝑆𝑡 .
In Sec. III-C, we have already introduced the task reward,

which plays a major role in the training. In addition, regu-
larization reward is used to optimize the performance of the
robot. “Stall” reward is used to prevent the robot from stopping
in the middle of the journey. “Velocity limit” reward is used
to slow down the robot and ensure safety. “Joint velocity”
reward and “Joint acceleration” reward are used to make the

joint movements more stable and smooth. “Angular velocity
stability” reward is used to make the base of the robot more
stable. “Feet in air” reward is used to improve the gait and
prevent the feet from rubbing on the ground. “Balance” reward
is used to improve the left-right symmetry. For style reward,
we first collect a dataset using an MPC controller. The dataset
contains a state transition (𝑠𝑡 , 𝑠𝑡+1), with a time interval same
as the RL policy. 𝑠𝑡 ∈ R19 includes joint positions, base height,
base linear velocity, and base angular velocity. We randomly
select 200 velocity commands in the simulator. Each command
lasts for two seconds and is converted to the next command
continually. Following [13], [37], we train a Discriminator
D𝑎𝑚𝑝 by the following loss function:

𝐿𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = E(𝑠𝑡 ,𝑠𝑡+1)∼MPC

[(
D𝑎𝑚𝑝 (𝑠𝑡 , 𝑠𝑡+1) −1

)2
]

+E(𝑠𝑡 ,𝑠𝑡+1)∼Policy

[(
D𝑎𝑚𝑝 (𝑠𝑡 , 𝑠𝑡+1) +1

)2
]

+𝛼𝑔𝑝E(𝑠𝑡 ,𝑠𝑡+1)∼MPC
[

∇D𝑎𝑚𝑝 (𝑠𝑡 , 𝑠𝑡+1)

2
]
,

And then we use D𝑎𝑚𝑝 to score the gait performance from
policy output (𝑠𝑡 , 𝑠𝑡+1):

𝑟𝑠𝑡 𝑦𝑙𝑒 = max
[
0,1−0.25

(
D𝑎𝑚𝑝 (𝑠𝑡 , 𝑠𝑡+1) −1

)2
]
. (12)

B. Network Architectures
The details of network architectures are shown in Tab. IV.

TABLE IV: Network architecture details

Network Type Input Hidden layers Output

Actor RNN LSTM 𝒑𝑡 , 𝒍𝑡 , 𝒈𝑡 [512, 256] 𝒂𝑡

Critic RNN LSTM 𝒑𝑡 , 𝒔̂𝑡 , 𝒄𝑡 , 𝒈𝑡 [512, 256] 𝑽 𝑡

Estimator Module LSTM 𝒑𝑡 , 𝒈𝑡 [256, 256] 𝒉𝑡

Latent Encoder MLP 𝒉𝑡 [256, 256] 𝒍𝑡

Contact Encoder MLP 𝒄𝑡 [32, 16] 𝒍𝑡𝑐

TABLE III: Reward functions

Type Item Formula Weight

Task

Get goal
1

0.4+ ∥Δ𝐺 ∥2
5.0

Heading


Δ𝑥

∥Δ𝐺 ∥2 + 𝜖
, ∥Δ𝐺 ∥2 ≠ 0

1, ∥Δ𝐺 ∥2 = 0
3.0

Finish vel (∥𝑣 ∥ + ∥𝜔 ∥) · (∥Δ𝐺 ∥2 < 0.2) -1.0

Finish pos (
12∑︁
𝑖=1

|𝑞 − 𝑞𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 |) · (∥Δ𝐺 ∥2 < 0.2) -1.0

Alive 1 3.0

Regularization

Stall (∥𝑉𝑥,𝑦 ∥2 < 0.1) · (∥Δ𝐺 ∥2 > 0.25) −2.0
Vel limit (𝜔𝑧 < 𝜔𝑙𝑖𝑚𝑖𝑡) · (∥𝑣𝑥,𝑦 ∥2 < 𝑣𝑙𝑖𝑚𝑖𝑡) 2.0
Joint vel ∥ ¤q∥2 −0.002
Joint acc ∥ ¥q∥2 −2× 10−6

Ang vel stability (∥𝜔𝑡,𝑥 ∥2 + ∥𝜔𝑡,𝑦 ∥2) −0.2

Feet in air
3∑︁

𝑖=0

(
t𝑎𝑖𝑟,𝑖 − 0.3

)
+10 ·min

(
0.5− t𝑎𝑖𝑟,𝑖 , 0

)
0.05

Balance ∥𝐹 𝑓 𝑒𝑒𝑡,0 +𝐹 𝑓 𝑒𝑒𝑡,2 −𝐹 𝑓 𝑒𝑒𝑡,1 −𝐹 𝑓 𝑒𝑒𝑡,3 ∥2 −2× 10−5

Style AMP max
[
0, 1− 0.25

(
D𝑎𝑚𝑝 (𝑠𝑡 , 𝑠𝑡+1) − 1

)2
]

0.1

C. Dynamic Randomization
For better sim-to-real transfer, we introduce dynamic

randomization, which includes domain randomization and
Gaussian noise. We have a series of domain randomization,
including base mass, mass position, friction, initial joint posi-
tions, initial base velocity, motor strength, and proprioception
latency. The random ranges are shown in the Tab. V.

TABLE V: Domain randomization

Parameters Range Unit

Base mass [0, 3] 𝑘𝑔

Mass position of X axis [-0.2, 0.2] 𝑚

Mass position of Y axis [-0.1, 0.1] 𝑚

Mass position of Z axis [-0.05, 0.05] 𝑚

Friction [0, 2] -
Initial joint positions [0.5, 1.5] × nominal value 𝑟𝑎𝑑

Initial base velocity [-1.0, 1.0] (all directions) 𝑚/𝑠
Motor strength [0.9, 1.1] × nominal value -

Proprioception latency [0.2, 0.4] 𝑠

Besides, we add Gaussian noise to the input observation,
as shown in Tab. VI. This aims to simulate the noise of real
robot sensors. Lots of experiments show that with dynamic
randomization, the policy can be easily transferred from
simulation to the real world without additional training.

TABLE VI: Gaussian noise

Observation Gaussian Noise Amplitude Unit

Linear velocity 0.05 𝑚/𝑠
Angular velocity 0.2 𝑟𝑎𝑑/𝑠

Gravity 0.05 𝑚/𝑠2

Joint position 0.01 𝑟𝑎𝑑

Joint velocity 1.5 𝑟𝑎𝑑/𝑠

D. Trap Terrain Setting in Simulation

Bar Pit Pole

Fig. 13: Trap terrain setting.

We employ “Terrain Curriculum” introduced in previous
work [43] for better policy training. Due to the instability
of reinforcement learning in early training, it is difficult for
the policy to learn the movement in complex traps at once.
Therefore, we design a trap curriculum to guide the policy
from easy to difficult. The terrain is distributed in 10 rows and
10 columns. The terrains are divided into 4 categories. Each
categorey has different traps ranging from easy to difficult.
The column numbers of Bar, Pit, Pole, and Plane are 3,2,3,2.
To prevent the robot from cheating by detouring, we put the
bar and pit in a circle. As shown in Fig. 13, the robot is born
inside the circle (blue point) and needs to reach outside the
circle (yellow point). The height of the bar increases evenly

from 0.05m to 0.25m, with a width randomizing in the range
[0.025m, 0.1m]. The width of the pit increases evenly from
0.05m to 0.30m. The number of the pole increases evenly
from 10 to 60, with a width randomizing in the range [0.025m,
0.1m]. In addition, we add perlin noise to all of the terrains
with an amplitude in the range [0.05m, 0.15m].

E. Training Hyperparameters
In our work, we conduct a Policy Optimization algorithm

(PPO) as our reinforcement learning method. The hyperpa-
rameters are shown in Tab. VII.

TABLE VII: PPO hyperparameters

Hyperparameter Value

clip min std 0.05
clip param 0.2
desired kl 0.01

entropy coef 0.01
gamma 0.99

lam 0.95
learning rate 0.001

max grad norm 1
num mini batch 4

num steps per env 24

In the training step, we clip the contact force to [0𝑁 , 100𝑁].
In addition, we conduct t-SNE visualization in our ad-

ditional experiments. The hyperparameters are shown in
Tab. VIII.

TABLE VIII: T-SNE hyperparameters

Hyperparameter Value

init ‘random’
perplexity 30

learning rate 200

F. Importance Analysis
Assume the input 𝐼 ∈ R𝑁 and the output (action) 𝑂 ∈ R𝑀 .

𝑂 = Policy(𝐼), (13)

First, we obtain the Jacobian matrix 𝐽 ∈ R𝑀×𝑁 by calculat-
ing the partial derivative.

𝐽 =



𝜕𝑂1
𝜕𝐼1

𝜕𝑂1
𝜕𝐼2

· · · 𝜕𝑂1
𝜕𝐼𝑛

𝜕𝑂2
𝜕𝐼1

𝜕𝑂2
𝜕𝐼2

· · · 𝜕𝑂2
𝜕𝐼𝑛

...
...

...
...

𝜕𝑂𝑚

𝜕𝐼1

𝜕𝑂𝑚

𝜕𝐼2
· · · 𝜕𝑂𝑚

𝜕𝐼𝑛


, (14)

We take the absolute value for each term of the matrix.

𝐽𝑎𝑏𝑠 = |𝐽 |, (15)

Fig. 14: Real-world traps: Thick Bar, Thin Bar, Thin Pole, Thick Pole, Pit.

Fig. 15: Crossing Bar in low-light environment.

Fig. 16: Crossing Pit in low-light environment.

Fig. 17: Crossing Pole in low-light environment.

For each input 𝐼𝑖 , we sum the corresponding output
dimensions and align them with the upper bound𝑈𝑖 and lower
bounds 𝐿𝑖 to get the importance vector 𝑆 ∈ R𝑁 .

𝑆𝑖 = (𝑈𝑖 − 𝐿𝑖) ·
𝑀∑︁
𝑗=1
𝐽𝑎𝑏𝑠 (𝑗 , 𝑖), 𝑖 = 1,2, · · · , 𝑁 (16)

For a group of input G ∈ 𝐼, such as Contact force, Linear
velocity, etc, we average importance for every input in G.

𝑆G =

∑
𝐼𝑖∈G 𝑆𝑖

num(𝐼𝑖 ∈ G) , (17)

The group G1,G2, · · · ,G𝑘 is for comparison, we normalize
them to get relative importance 𝑅 ∈ R𝑘 for each group.

𝑅𝑖 =
𝑆G𝑖∑𝑁
𝑗=1 𝑆G 𝑗

, 𝑖 = 1,2, · · · , 𝑘 (18)

G. Real-world Experiment Settings and Additional Results
We use common easily accessible items as traps for our

real-world experiments, as shown in Fig. 14. For the Bar trap,
there are two variations: thin bars and thick bars. The thin bars
have a diameter of 6mm, while the thick bars measure 20mm
in diameter. For the Pit trap, we separate two wooden boxes
with a height of 40mm by some distance. For the Pole trap,
there are also thin and thick poles. The thin poles are the legs
of a iron table with a diameter of 8mm, while the thick poles
include a range of obstacles made from thick iron poles and
sticks of varying diameters.

We also conduct experiments in low-light environment,
as shown in Fig. 15, Fig. 16, and Fig. 17. The robot can
robustly move through different traps even if there is little
light. The results demonstrate the effectiveness and importance
of proprioception locomotion in scenarios where there is no
visual input, such as during nighttime.

